Water Suppression using Presaturation (presat)

Presat is a simple two-pulse experiment that utilizes a relatively long, low power RF pulse to selectively saturate a specific frequency, typically water, and a non-selective 45-90° pulse to excite the desired resonances. This pulse sequence is particularly useful for aqueous samples or those with a single large solvent signal. With proper optimization, the resulting spectrum can be mostly free of the solvent signal and lead to improved Signal-to-Noise (S/N) for solute resonances due to the reduction in dynamic range and subsequent increase in available gain. This handout walks you through the optimization of presaturation for water suppression.

Figure 1. Example of presaturation used on a sample of sucrose dissolved in a D_2O/H_2O mixture. The top spectrum is obtained without presaturation. The bottom spectrum uses presaturation. Both spectra obtained on a UnityPlus-500 spectrometer with 16 scans each.

Explanation of Types of Commands Found in this Handout:

1. The vnmr software and the UNIX operating system are both case sensitive. This means that the computer distinguishes whether the letters are entered in upper case (i.e. CAPITALS) or lower case. The user must be careful to type the correct case for each letter in a command.

EXAMPLE: jexp1 is not the same as JEXP1

2. Some commands are line commands and are typed in by the user followed by a hitting the RETURN key.

EXAMPLE: su

Hitting the RETURN key is assumed for all bold text.

3. Some commands are executed by clicking a mouse button with its pointer on a 'button' found on the screen. The execution of these commands are indicated by a two letter designation (LC {left click}, RC {right click}, or CC {center click}) followed by a word or words in bold that would appear in the 'button'.

EXAMPLE: LC Main Menu

This means to click the left mouse button with its pointer on the 'button' that says "Main Menu".

4. Some commands are executed by the mouse itself. These commands are indicated by the two letter designation (LC, RC, or CC) and a description of what the user should do in parentheses.

EXAMPLE: LC (at 6 ppm)

This means to click the left mouse button with the mouse cursor at 6 ppm.

5. Parameters are entered by typing the parameter name followed by an equal sign, the value, and a return.

EXAMPLE: nt=16 <rtn>

* * * * * * *

Still in exp1, <i>expand around water peak</i> , <i>place cursor at top</i> , and type:			
nl	move cursor to nearest line		
movetof	center spectrometer frequency to		
	cursor		
nt=1 ga	submit experiment to acquisition		
f full centersw	cursor should be at the top of the		
	water peak. If not, place cursor near		
	top, type nl movetof ga . Check if		
	centered on water.		
tof?	returns the position of tof		
tof =	Record the value of tof		
mf(1,2) jexp2 wft	move the FID from exp1 to exp2 and		
	join exp2		
presat	setup a presaturation experiment		
satpwr=5	set the saturation power to 10 dB		
satfrq=tof	set the saturation frequency to the		
	transmitter offset		
ss=0	set the steady-state scans to zero		
gain=20	set gain to 20		
ga	submit experiment		
av	set display to absolute value. No		
	phase information is displayed		
array	setup an arrayed experiment		

In exp1, *setup*, *lock*, *shim*, *and acquire a standard* ¹*H NMR spectrum*. (nt=1 is sufficient).

You will need to answer the following questions, which will appear above the command line:

	parameter to be arrayed:	
satfrq		saturation frequency. You want to find the optimum saturation
		frequency for water suppression
	enter number of steps in array:	
20		this is the number of different points you will check for the optimum saturation frequency
	enter starting value:	
value	of tof determined above – 10	For example, tof= -175.5 , then enter -185.5
	enter array increment:	
1		this is the step increase between each point
da		displays array. Make sure that the tof is roughly in the center of the
		array.

ga	start acquisition	
Once completed, <i>expand around the water peak</i>		
ai dssh	display absolute intensity stacked plots horizontally	
Look for the spectrum with the smallest water peak. If the spectra are off scale, type vs=vs/3 dssh . Repeat, if necessary. If peaks are too small, type vs=vs*3 dssh .		
dssl da <pre>satfrq=(value determined)</pre>	lists array numbers and array. Note the array increment that gives the smallest water peak: this is the best satfrq for example, satfrq=-174.5	
Now you will determine the optimal presaturation power. Type,		
satpwr=2,4,6,8,10,12 ga	sets the satpwr to an array of values acquire the arrayed data	
Once completed,		
dssh	display stacked plots horizontally	
Look for the spectrum with the smallest water peak vs=vs/3 dssh . Repeat, if necessary.	. If the spectra are off scale, type	
dssl da satpwr= <i>best value from previous step</i> gain='n'	lists array numbers and array. Note the array increment that gives the smallest water peak: this is the best satpwr. set the satpwr to optimal value. resets gain to automatic control	
ph ss=4 nt=32 <i>or higher</i> ga	return to normal phase sensitive mode acquire a spectrum	

Check spectrum for quality of water suppression. Repeat from array of satfrq, if necessary.